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Abstract. The traditional compressed sensing algorithm realizes the optimization of image reconstruction 

through multiple iterative calculation from limited measurements, which cost high computational complexity 

and long reconstruction time. As the development of deep learning, it is proposed to combine the technology 

with compressed sensing(CS) which shows great advantages in accurate and fast CS reconstruction. In this 

paper, we propose a novel algorithm synthesize the advantages of the two technology as well as add another 

sparse prior technique based sym8 wavelet, which dubbed WCS-Net, is focus on two parts: sampling network 

based on sparse representation and deep reconstruction elastic network. Experimental results show the WCS-

Net has the advanced performance at measurement rates 0.01, 0.04, 0.1, and 0.25, respectively, while 

maintaining the same running speed as existing image compression methods based on deep learning. 
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1. Introduction 

The conventional information transmission follows the Nyquist sampling, which sampling frequency 

should be no less than twice the highest frequency of the signal [1]. In 2006, Compressed Sensing (CS) theory 

[2] proposed by Candes, et al, which is based on sparse representation, complete the compression of 

information at the same time of sampling that breaks the limited bandwidth of traditional information 

transmission. CS has been applied in many practical applications, such as single-pixel cameras, accelerating 

magnetic resonance imaging (MRI), and wireless broadcast. 

Currently, the CS methods are divided into two categories, namely traditional CS algorithm and CS 

algorithm based on deep learning technology. The traditional CS algorithm include convex optimization 

algorithm [5], greedy matching pursuit algorithm [4, 6], Bayesian algorithm [7] and the gradient descent 

methods [8]. These iterative calculations based on traditional methods have high complexity, time-consuming, 

and poor real-time performance. CS technology is based on sparse prior, and sparsity has been proven to be 

effective in many fine-structure image reconstructions, such as discrete wavelet transform(DWT) [9] that used 

as prior knowledge of the original image signals, which are beneficial to compressive sensing image 

reconstruction. The multi-hypothesis (MH) [13] prediction is applied to CS reconstruction of both still images 

and video sequences. 

The CS algorithm based on deep learning is three orders of magnitude faster than the traditional CS 

algorithm and is an end-to-end difficult to interpret black box network. Typical deep learning-based CS 

methods include denoising encoder, convolutional neural network, residual network and generated model 

network. The precision of image reconstruction can be improved through amount of training and learning. In 

[16], Mousavi et al. proposed a stacked denoising autoencoder (SDA) to learn the signal mapping between CS 

certain measurements and improve signal reconstruction performance. In [15], Kulkarni et al. used a CNN 

(ReconNet) for image block reconstruction and an off-the-shelf denoiser for deblocking. In [18], the DR2-Net 

proposed by Yao et al., which used the residual network to enhance the reconstruction quality of image. All of 

these block-by-block reconstruction methods [16,15,18] adopt random Gaussian matrix for measurements 

sampling and do not combine with image prior information to further enhance the accuracy of sampling 
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measurements. At the same time, there are block artifacts caused in these methods, which affect the quality of 

reconstruction. 

In this paper, we focus on how to achieve more efficient and high quality reconstruction and recovery with 

less and more accurate measurements data. The model will have better feature representation and 

generalization performance around these representational purposes. Therefore, the article is roughly divided 

into the following points: 

(i)The sparsity is proved to be effective in mage reconstruction [17]. In terms of sparse processing, wavelet 

sparse processing has a good effect on denoising. Therefore, this paper adopts the one-layer wavelet 

transform to carry out the image sparsity processing.  

(ii)The sampling network is designed adaptively according to the image sparsity, and the sampling values 

with more image characteristics are extracted to further improve the reconstruction quality. 

(iii)The reconstruction network adaptively combines the sampling values obtained by the sampling 

network and optimizes the overall reconstruction quality through training. The reconstruction network 

is divided into two subnetworks: the initial reconstruction network and the deep reconstruction network. 

The initial reconstruction network reconstructs the whole image, and the deep reconstruction network 

further improves the effect and precision of the final image reconstruction. 

2. Algorithm Overview  

As shown in Fig. 1, WCS-Net is takes the Compressively Sensed (CS) measurements of the wavelet 

transformed image as input, then use adaptive sampling network [19] to obtain more accurate measurement 

data, further more we conduct refactoring network to automatically realize high-quality reconstruction. The 

refactoring network contains two networks: initial reconstruction network and deep reconstruction network. 

Among them, the deep reconstruction network adopts residual network [11], which is the further improvement 

of DR2-Net. WCS-Net combines the sparse priori with deep learning which can celebrate the network 

convergence speed, boost the network performance and has good performance with low computational 

complexity.  

Fig. 1: The network structure schematic of WCS-Net. 

2.1. Sparse Wavelet Transform Based on CS 

CS technology aims recovery the signal x∈Rn×1 from its measurements y ∈ 𝑅𝑚×1 . This process can be 

expressed as: 

                                                                    y=Φx                                                                                       (1) 

Here, Φ ∈ 𝑅𝑚×𝑛 is a linear random projection (matrix), this process is a typical ill-posed problem, m/n is 

defined as CS ratio(m<<n). 

The structured sparse signal reconstruction algorithm [20] by introducing the structure of the model to 

choose presupposition to constrain the feasible solution space, reduce the understanding of spatial dimension, 

and the necessary number of sampling measurement, which not only get fast speed, but also obtain better 

refactor. Based on the different edge information of the image, we first make the image x sparsely divided into 

blocks using the Sym8 wavelet basis (Ψ = [𝜓1, ψ2,⋅⋅⋅, ψ𝑁]) as shown below: 

                                                                     x = Ψs                                                                                   (2) 

s∈ 𝑅𝑛×1  is the signal form of x after the wavelet sparse transformation, when ∥ s ∥0= 𝐾 , that is, signal 

x can be considered to be K sparse under the wavelet basis.  

Wavelet transform makes the image from two-dimensional spatial domain to high and low frequency 

wavelet domain, which effectively improves the image processing effect of CS technology. 
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Fig. 2: A schematic diagram of one-layer wavelet transform with a step size of 32 for the image. 

From Fig. 2 the left picture, the image is divided into four sub-band modules: LL, HL, LH and HH 

respectively represent the approximate components, horizontal details, vertical details and diagonal details of 

the image. Among them, HL has column sparsity in the horizontal direction, LH has row sparsity in the vertical 

direction, and HH has sparsity in the diagonal direction. In our method, we carry out a layer of sym8 wavelet 

transform to the image with the step size 32x32, and the transformed image is the right picture shown in Fig. 

2 the right picture. 

Combined with equation (2), equation (1) can be expressed as: 

                                                                        y = Φx = ΦΨs                                                                  (3) 

Through the sparse image processing, it is better for sampling to obtain more accurate measurements data, 

so as to achieve better reconstruction. 

2.2. Sampling Network 

The sampling network designed in our method, which uses BCS measurement projection divides the 

sparsely processed images into non-overlapping blocks of size B×B×𝑙 , where B and 𝑙 represent the spacial 

size and the number of channel, as well as the value are set as 32 and 1, respectively. We denote the 𝐹𝑠(∙) a 

convolution layer as the sampling network, which have the 𝑛𝐵 filters of size B×B×𝑙, no bias and the stride of 

this convolution layer is B×B. The whole procession devoted as Conv(B, 𝑙, 𝑛𝐵) in Fig 1 would be shown as 

the following equation: 

y = 𝐹𝑆(s, 𝑊𝑆) = 𝑊𝑆 ∗ s =   𝑛𝐵 =
𝑚

𝑛
𝑙𝐵2                                                           (4) 

which the weight 𝑊𝑆 indicated as 𝑛𝐵 filters of size B×B×𝑙. By training the whole algorithm framework 

with Adam [12] method, the optimal sampling matrix can be obtained adaptively. 

2.3. Refactoring Network 

1) Initial Reconstruction Network 

By the sampling network, the optimally measurements y would be obtained, then the convolution layer 

and concatenation layer are used to construct y to the initial reconstruction 𝑥̃, that is expressed as the following 

equation: 

𝑥̃ = 𝐹𝐼(𝑦, 𝑊𝐼) =  𝐹𝐼(𝐹𝑆(s, 𝑊𝑆), 𝑊𝐼)  

 

            = 𝐶 (

𝛾(𝐹11
𝐼 (𝑦, 𝑊𝐼)) ⋅⋅⋅ 𝛾(𝐹1𝑤

𝐼 (𝑦, 𝑊𝐼))

⋮ ⋱ ⋮
𝛾(𝐹ℎ1

𝐼 (𝑦, 𝑊𝐼)) ⋅⋅⋅ 𝛾(𝐹ℎ𝑤
𝐼 (𝑦, 𝑊𝐼))

) 

 

                                                                = 𝐶 (
𝛾(𝐹11

𝐼 (𝐹𝑆(𝑠, 𝑊𝑆), 𝑊𝐼)) ⋅⋅⋅ 𝛾(𝐹1𝑤
𝐼 (𝐹𝑆(𝑠, 𝑊𝑆), 𝑊𝐼))

⋮ ⋱ ⋮
𝛾(𝐹ℎ1

𝐼 (𝐹𝑆(𝑠, 𝑊𝑆), 𝑊𝐼)) ⋅⋅⋅ 𝛾(𝐹ℎ𝑤
𝐼 (𝐹𝑆(𝑠, 𝑊𝑆), 𝑊𝐼))

)                               (5) 

Which 𝑊𝐼 corresponding to the 1 × 32 × 32 filters, 𝐹ℎ𝑤
𝐼 (𝑦, 𝑊𝐼) represent 1 × 1 × 32 × 32 vector, h and 

w respectively indicate the number of blocks in rows and columns. The symbol, 𝛾(⋅), means reshape function 

that converts the 1024 vector is into 32 × 32  a two-dimensional image blocks. 𝐶(⋅)  is the function that 

concatenates all blocks to form the whole image. 

2) Deep Reconstruction Network: 

Wavelet 

transform 

 

t 
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The deep reconstruction network 𝐹𝐷(𝑥̃, 𝑊𝐷) is designed similar to the DR2-Net algorithm, reconstructs 

the image through the sampling network and the initial reconstruction network to obtain the approximate 

original image, then obtains high quality reconstructed images by learns the residuals of the image from the 

residual network that consist of four residual submodules and each submodules comprise three convolutional 

layers in Fig. 3. The four residual submodules are represented by green, purple, blue and magenta respectively. 

 
Fig. 3: The framework of Deep Reconstruction Network. 

The first layer is green residual submodule which takes initial reconstruction as input and generates 64 

feature maps with kernel of size 11 ×11, the second convolution layer generates 32 feature maps with 1×1 

kernel, the third convolution layer generates one feature map (residual image) with 7×7 kernel, then fuses it 

with the initial reconstructed image and used as the input of the next residual module. Then other modules 

with the same residual module are processed successively, and the final result is the reconstructed image. In 

the convolution process, the step size is 1 and add corresponding padding on each layer to keep the original 

image size, the final reconstructed image is 𝑥̃′.  

By training on the sampling and refactoring network simultaneously, we could get 𝑊𝐼 , 𝑊𝑆, 𝑊𝐷 by solving 

the following equation, i.e. ,  

𝑊𝐼 , 𝑊𝑆, 𝑊𝐷 = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝑤𝑖,𝑤𝑠,𝑤𝑑

∥ 𝑥 − 𝑥̃′ ∥2
2 = 𝑎𝑟𝑔 𝑚𝑖𝑛

𝑤𝑖,𝑤𝑠
∥ 𝑥 − 𝐹𝐷(𝑥̃, 𝑊𝐷) ∥2

2 

                                                             = 𝑎𝑟𝑔 min
𝑤𝑖,𝑤𝑠,𝑤𝑑

∥ 𝑥 − 𝐹𝐷(𝐹𝐼(𝑦, 𝑊𝐼), 𝑊𝐷) ∥2
2       

                                                             = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝑤𝑖,𝑤𝑠,𝑤𝑑

∥ 𝑥 − 𝐹𝐷(𝐹𝐼(𝐹𝑆(𝑠, 𝑊𝑆), 𝑊𝐼), 𝑊𝐷) ∥2
2                                                  (6) 

Different from the traditional block-based compressed sensing algorithm, our method avoids the block 

effect through the way of convolution, so there is no need to add BM3D to remove the block artifacts, which 

greatly improves the efficiency and is better than the DR2-Net method in effect. 

3. Experiment  

3.1. Training Data Generation and Implementation Details 

We choose 400 images of the BSDS500 [3] database as the training dataset which consists of the training 

set (200 images) and the test set (200 images). Firstly, we cropped the training dataset that 400 images into the 

size of 96×96 pixel sub-images. Then these sub-images are subjected to the following data enhancement 

operations, such as rotation and flipped of the corresponding transformed images. Finally, the 89600 patches 

are chosen to optimize the network parameters. For the whole network, the number of training epochs is 100, 

which the learning rate of the first 50 epochs, the middle 30 epochs and the last 20 epochs are set as 10-3, 10-4 

and 10-5, respectively. In the specific training procession, the colour space of image from RGB to YCbcr, and 

only training the luminance component Y. 

3.2. Comparison with the State-of-the-art 

1) Comparison with traditional methods 

Table 1: Average PSNR and SSIM comparisons of different image CS algorithms on Set5 [19] 

Data 
 DWT TV MH GSR WCS-Net 

Ratio PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM 

 0.01 9.27 0.140

2 

15.53 0.455

4 

18.08 0.447

2 

18.87 0.4909 23.96 0.643

5  0.05 14.27 0.355

9 

23.16 0.667

8 

23.67 0.656

6 

24.95 0.7270 29.35 0.838

3 Set5 0.1 24.74 0.768

0 

27.07 0.786

5 

28.57 0.821

1 

29.99 0.8654 32.30 0.902

0  0.2 30.83 0.874

9 

30.45 0.870

9 

32.08 0.888

1 

34.17 0.9257 35.66 0.944

8  0.3 33.61 0.9.50 32.75 0.910

7 

34.06 0.915

8 

36.83 0.9492 37.89 0.962

4 

342



  

As shown in Table 1, four typical and advanced traditional compressed sensing methods were selected for 

comparison which are wavelet method (DWT) [9], total variation (TV) method [10], group sparse 

representation (GSR) method [14] and multi-hypothesis (MH) method [13], all of them are the BCS methods. 

We selected Set5, three datasets which are widely used in the field of compressed sensing, and evaluated each 

algorithm by the two indexes of signal-to-noise ratio and structural similarity. We select 5 sampling ratio, i.e. 

0.01,0.05,0.1,0.2,0.3 to have quantitative and qualitative comparison. All the compared methods would be 

downloaded from the authors’ websites, and the experiments are accomplished in Matlab2018b on Windows 

10 system, and runs on desktop computer with Intel Core i7-3770 CPU + NVIDIA GTX1080 GPU, except the 

authors has already provided the results of compared methods.  

2) Comparison with deep learning methods 

The compared deep learning based CS methods include: SDA, ReconNet and DR2-Net.The average PSNR 

comparison on Set11 [15] of four sampling ratios are shown in Table 2 are taken from [18]. As shown in table 

2, WCS-Net outperforms the other compared deep learning methods significantly at any ratio. 

Table 2: Average PSNR comparison of different deep learning based image CS methods on Set11 

Data Alg. 
Ratio 

0.01 0.04 0.1 0.25 

Set11 

SDA 17.29 19.96 22.43 24.72 

ReconNet 17.27 19.99 22.68 25.54 

DR2-Net 17.44 20.80 24.32 28.66 

WCS-Net 20.73 24.61 28.09 32.63 

Fig.4 shows a visual quality comparison of image CS recovery in the case of sampling ratio of 0.01, 0.04，

0.1 and 0.25. Obviously, the WCS-Net achieves better visual quality than the DR2-Net methods. 

MR=0.01     MR=0.04      MR=0.1      MR=0.25          MR=0.01     MR=0.04      MR=0.1      MR=0.25  

           
        PSNR: 18.98db        22.39db        25.27db       29.42db            20.75db       24.19db        27.40db        31.64db 

          

PSNR: 22.36db       25.70db        28.64db       33.27db            24.26db       27.75db        31.16db        35.72db 

Fig. 4: Visual quality comparison of image CS recovery on image from State farm [21] in different sampling ratio. 

4. Conclusion   

In this paper, we proposed a network model which is the improvement based on DR2-Net algorithm, 

synthesize the advantages of the deep learning and the sparse prior, uses adaptive sampling network and 

refactoring network. Extensive experiments show that WCS-Net greatly improve upon the results of state-of-

the-arts CS methods, while maintaining a fast runtime.  
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